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An iterative procedure is presented for solving steady inviscid three-dimensional (3-D) sub- 
sonic or incompressible rotational flow problems. The procedure combines concepts (Clebsch 
potentials and Munk-Prim substitution principle) from classical fluid mechanics with an 
extension to 3-D of a semi-direct Cauchy-Riemann solver. 0 1985 Academic Press, Inc. 

As is well known, the solution of the three-dimensional (3-D) steady Euler 
equations for subsonic or incompressible flows is a very difficult problem. This is 
because the flow equations are of hybrid type (locally neither elliptic nor hyper- 
bolic) [ 1 ] and therefore cannot be directly solved using standard elliptic or hyper- 
bolic solvers. In general, they are solved using time-marching methods. Unfor- 
tunately, due to the lack of dissipative mechanism, this classical approach may 
require very large computation time. 

In the current study, a new method is developed for solving the above problem. 
It combines concepts from classical fluid mechanics with an extension to 3-D of a 
novel semi-direct Cauchy-Riemann solver [2]. In essence, the current method 
obtains the solution through the iterative execution of two interacting loops. The 
outer loop solves hyperbolic equations while the inner loop solves elliptic equations. 
The presentation of this work is divided into two parts. In Part I the theoretical 
foundation is developed while in Part II (the accompanying paper), several 
numerical results obtained using the current algorithm are presented to validate its 
usefulness in solving rotational flow problems. 

For compressible flows, the governing differential equations which are assumed 
in this study describe a steady, inviscid, and non-heat-conducting flow in the 
absence of external body forces. The compressible fluid is a perfect gas with con- 

* Partial results of this paper were presented at the AIAA 6th Computational Fluid Dynamics Con- 
ference, Danver, Mass., July 13-15, 1983. 
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stant specific heat capacities. We will refer to the class of flows which are governed 
by the above equations as Munk-Prim flows to acknowledge the applicability of 
the Munk-Prim substitution principle [ 33 which significantly simplifies their 
solution. The details of this substitution principle and its application to the current 
problem are fully discussed in Section II. Briefly, it entails mapping an arbitrary 
Munk-Prim flow into a substitute flow which can be solved with less com- 
putational effort. Upon obtaining the substitute flow solution, the solution to the 
original problem is constructed with a reverse mapping procedure. 

For incompressible flows, the governing differential equations which are assumed 
in this study describe a steady and inviscid flow. The fllow can be subjected to a 
conservative external body force. The solution procedure used is a simplified ver- 
sion of that for compressible flows. 

The implementation of the Munk-Prim flow solver is presented on the flow chart 
shown in Fig. 1. The derivation of the equations solved in the two interacting loops 
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FIG. 1. Flow chart for Munk-Prim flow solver. 
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is presented in Section I. In the outer loop, the total pressure, total temperature, 
and vorticity distributions are found for a given velocity field. The solution strategy 
is presented in Section II and the questions of initial conditions and uniqueness of 
solution are addressed in Appendix A. An interesting feature of the current solution 
procedure for the vorticity vector is that it sidesteps solving the 3-D vorticity trans- 
port equation [4], in which the vorticity components are coupled. In the current 
procedure the vorticity components are obtained from the solutions of uncoupled 
partial differential equations (PDEs). 

In the inner loop, the velocity and mass density fields are updated so as to satisfy 
the continuity equation and the condition that the curl of the velocity equals the 
vorticity. Within this loop, the total pressure, total temperature, and vorticity dis- 
tributions, as well as a relationship between density and velocity, are assumed 
known. The iteration procedure by which the velocity and mass density fields are 
updated is presented in Section II and its stability is discussed in Appendix B. 

I. GOVERNING EQUATIONS 

(I. 1) Munk-Prim Flows 

(1.1.1) Vector Form 

The differential equations of the present analysis are the continuity equation 

OqpV)=o (1.1) 

momentum equation 

(Qq Q+(l/p)OP=o (1.2) 

and entropy equation 

v,os=o (1.3) 

where v, p, P, and S are the velocity vector, mass density, static pressure, and 
specific entropy, resectively. The above equations can be recast in terms of total 
pressure P,, total temperature TO, and velocity p by employing the following ther- 
modynamic relationships: 

(1.4) 

(1.5) 

and 

S=C,ln TO-Rln P,. (I.61 
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Here C, is the specific heat capacity at constant pressure, R the ideal gas constant, 
and y the ratio of specific heat capacities. The parameters C,, R, and y are all con- 
stants for Munk-Prim flows. Throughout this study, the focus is to lind the five 
variables P,, T,, and v (three components) which satisfy the live governing 
equations (Eqs. (I.1 ) to (1.3)). All other variables are considered functions of these 
fundamental variables. 

It should be noted that Eqs. (1.1) to (1.6) can be nondimensionalized by scaling 
length, pressure, temperature, and density against a reference length L*, a reference 
pressure P*, a reference temperature T*, and a reference density p* (P*, T*, and 
p* are assumed to satisfy the perfect gas law). Any additional reference variable is 
formed directly from P*, T*, and 
p/J-- and the 

p*. (For example, the c$iensionless velocity dAf- 
dimensionless entropy = (S - S*)/R with 

S* dGf. C, In T* -R In P*.) This results in a set of dimensionless flow equations 
which retain their original forms with a dimensionless gas constant R = 1 and a 
dimensionless heat capacity C, = r/( y - 1). 

In the remainder of this subsection, we will collect the differential equations 
which are used in the two iteration loops which form the solver. To proceed, one 
notes that Eq. (1.2) and the thermodynamic relations can be combined to form 
Crocco’s equation, i.e., 

pxn’=vh,- flS. (1.7) 

Here h, and Tare the specific total enthalpy and absolute flow temperature, respec- 
tively. The vorticity vector b is defined as 

d=Vx P (I.81 

and thus 

a.a=o. (1.9) 

In the current analysis Crocco’s equation is used in place of the momentum 
equation. Also, since p. px d = 0, Eqs. (1.3) and (1.7) imply that 

p. vh, = 0. (1.10) 

With the aid of Eq. (1.6) and the relation 

h,=C,To (1.11) 

Eqs. (1.3) and (1.10) can be replaced with the equivalent expressions: 

lmP,=O (1.12) 

and 

v.vT,=O. (1.13) 
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In the inner iteration loop, PO, T,, and d are provided by the outer loop and the 
objective is to find a velocity v (with corresponding density p from Eq. (1.4)), 
which satisfies Eqs. (I.1 ) and (1.8). The details of the inner loop iteration procedure 
are provided in Section II. 

In the outer loop, the velocity field v is assumed known and the objective is to 
find a total pressure P,, a total temperature r,, and a vorticity d which satisfy 
Eqs. (1.7), (1.9), (1.12), and (1.13). The evaluation of these variables can be divided 
into three steps. First, the unknowns P, and To are solved using Eqs. (1.12) and 
(1.13). This can be done if the inlet distributions of P, and r, are known. In the 
second step, the variables h,, T, and S are evaluated from the updated P, and TO 
values using Eqs. (1.6) and (I.ll), and the relation: T= TO- (p. @/(2C,). In the 
final step, the vorticity vector fi’, which is required to satisfy Eqs. (1.7) and (1.9), is 
constructed according to Theorem 2 of Appendix A, i.e., 

d=tsh,x%+~Sx$ (1.14) 

where the two scalar functions z and ,U (referred to as the Clebsch potentials 
associated with d) satisfy the equations 

P.Ot= 1 (1.15) 

P$L= -T. (1.16) 

It should be noted that n’ is obtained directly from the solution of four uncoupled 
first order PDEs (Eqs. (1.12), (1.13), (1.15), and (1.16)). These hyperbolic PDEs 
have the same characteristics (i.e., streamlines) and thus can be integrated 
simultaneously. This procedure for calculating d is far simpler than trying to solve 
Eqs. (1.7) and (1.9) directly. The solution of Eqs. (1.15) and (1.16) requires as input 
the inlet distributions of z and p. These distributions, according to Theorem 1 of 
Appendix A, must be chosen to be consistent with the streamwise vorticity at the 
inlet. 

In the present analysis, the substitute flows are either hornentropic (OS= 0) or 
hornenergetic (Oh, = 0). For hornentropic flows, the second term on the right side 
of Eq. (I.14) vanishes. As a result, there is no need to solve Eq. (L16). Furthermore, 
for this class of flows, TO becomes a function of PO (see Eq. (11.5)) which eliminates 
the need to solve Eq. (1.13). Thus only two PDEs, i.e., Eqs. (1.12) and (1.15), need 
to be solved in the outer loop for hornentropic flows. Similarly, for hornenergetic 
flows, only Eqs. (1.12) and (1.16) need to be solved. This observation justifies our 
earlier contention that the use of the Munk-Prim substitution principle can lead to 
a simpler procedure for solving the general Munk-Prim problem. 

(1.1.2) Tensor Form 

In the previous subsection, the basic equations for the two iteration loops were 
derived using vector notation. Before these equations are solved in a non-Cartesian 



28 CHANGANDADAMCZYK 

computational space, they shall be converted to general tensor forms. If we adopt 
Einstein’s summation convention (which we shall use throughout this and the 
following papers), then in terms of the general computational coordinates ix’}, the 
tensor forms of the outer loop Eqs. (I. 12) to (1.16) are, respectively, 

and 

(1.17) 

(1.18) 

(1.19) 

(1.20) 

(I.21 ) 

In the above equations V’ is the contravariant velocity vector, 52’ is the con- 
travariant vorticity vector, g is the determinant of the covariant metric tensor g,, 
and s’ik is the contravariant Levi-Civita tensor density. It should be understood 
that the range of tensor indices, unless otherwise noted, is 1, 2, 3. 

The tensor forms of the inner loop Eqs. (1.1) and (1.8) are given in Eqs. (11.7) to 
(11.9). 

(1.2) Incompressible Flows 

The analysis of the previous subsection encompasses incompressible flows as well. 
For these flows, the governing equations are Eqs. (I.l), (1.2), and 

p = constant. (1.22) 

It should be noted that the flows governed by these equations can be subjected to a 
conservative external body force since the term associated with it can be absorbed 
into the pressure term [S]. These equations can also be nondimensionalized by 
introducing a reference length L*, a reference density p* (dAf. fluid density), a 
reference velocity l’*, and a reference pressure P* (dzf’ p*( V*)2). This results in a set 
of dimensionless flow equations which retain their original forms with a dimen- 
sionless density of p = 1. 

Combining Eqs. (1.2), (1.8) and (1.22) yields 

~xsz’=V(P,/p) (1.23) 
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with 

P, dz P + $( V. V) = total pressure. (1.24) 

As a result of Eqs. (1.22) and (1.23), Eq. (1.12) is also valid for this special class of 
flows. 

Equations (I.l), (I-8), (1.9), (1.12), and (1.23) are the equations to be solved for 
incompressible flows. Their solutions can be obtained in a fashion similar to that 
for hornentropic flows. 

II. SOLUTION STRATEGY 

(II. 1) Munk-Prim Substitution Principle and Its Application 

In Section I, it was shown that a Munk-Prim flow can be specified in terms of 
total pressure P,, total temperature T,,, and the velocity vector l? The Munk-Prim 
substitution principle states that, if P,, TO, and p specify a given Munk-Prim flow, 
then one can generate another Munk-Prim flow (referred to as the substitute flow) 
by the transformation 

PO = P,, Tb = To/C?, F = I$ (11.1) 

where Pb, T& and p are the flow variables of the substitute flow and CL 
(Munk-Prim gauge factor) satisfies the equation 

v.ou= P.T4x=o. (11.2) 

The proof of this principle follows directly from Eqs. (1.1) to (1.6). From Eq. (1.5) 
and Eq. (II.l), it is seen that the static pressure is invariant under a Munk-Prim 
transformation. Similarly, the Mach number and the streamline pattern are also 
invariant under this transformation. 

The substitution principle associated with Munk-Prim flows can be used to 
reduce the computational effort required to solve the general Munk-Prim flow 
problem. This reduction in effort is made possible by a proper choice of a. To 
explore this further, let LX be equal to 

(11.3) 

or 

u=a, ef.& (11.4) 

Both a, and a, satisfy Eq. (11.2) since T,, and P, are constants along a streamline. If 
X= CC,, then Eqs. (11.1) and (11.3) coupled with Eq. (1.6) imply that 

S’=O and To = p;Jb ~ 1 l/Y = p(P ~ I )/y 
0 (11.5) 
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i.e., the substitute flow is hornentropic. Similarly, if c1= tlz, 

T;, = 1 and Pb=P, (II.@ 

i.e., the substitute flow is hornenergetic. Solutions with either s’=O or rO= 1 
require less work to evaluate since their generation requires two fewer equations to 
be solved per outer iteration cycle than that for the general flow problem. 

As for the question of which choice of the Munk-Prim gauge factor has the 
advantage over the other, one recalls that Eqs. (1.12) and (1.15) need to be solved 
for the hornentropic flow while Eqs. (1.12) and (1.16) need to be solved for the 
hornenergetic flow. Since integration of Eq. (1.16), compared with that of Eq. (1.15), 
requires the extra effort of evaluating the temperature T, the choice with a = ~1, has 
a slight edge over the choice with (x = CI* in the outer loop calculations. However, 
the advantage shifts to the choice with c1= az in the inner loop calculations since 
evaluation of the density is slightly easier if T,, = 1 (see Eq. (11.13)). Overall 
speaking, it is not clear which choice has the advantage over the other. 

To generate the solution to the original problem from the solution of the sub- 
stitute flow problem, the Munk-Prim gauge factor CI~(Q) must be evaluated 
throughout the flow field. This is accomplished by integrating Eq. (11.2). With ai, 
(c(~) known, the solution to the original problem is found by employing Eq. (11.1). 

(11.2) Outer Loop 

In Section I, it was shown that only Eqs. (1.17) and (1.20) or Eqs. (1.17) and 
(1.21) need to be solved in the outer loop if a solution to a substitute flow problem 
is desired. These PDEs are first order and linear if the velocity field is assumed 
known. They may be solved using a standard marching procedure for hyperbolic 
equations. Once these equations are solved, the vorticity field is updated according 
to Eq. (1.19). 

(11.3) her Iteration Loop 

The basic equations which are solved in the inner loop are Eqs. (1.1) and (1.8). 
The tensor forms of these equations are, respectively, 

aF' g=o 

and 

(11.7) 

where F’ is the contravariant mass flux vector defined as 

F=p,/&“l/,. 
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The variables which appear in Eqs. (11.8) and (11.9) and were not defined previously 
are Vi, the covariant velocity vector, and g*, the contravariant metric tensor. For 
Munk-Prim flows, the density is related to the velocity by Eq. (1.4). This equation, 
expressed in general tensor form, is 

(11.10) 

Given P,, T,,, and 52’, Eqs. (11.7) to (11.10) will be solved by an iterative 
procedure which is suggested by the work of Martin [2]. The equations which form 
the iterative procedure, unlike Eqs. (11.7) to (II.lO), are valid only in a specified 
computational space and hence shall not be considered as tensor equations. 
However, in order to economize the mathematical presentation, we shall continue 
to use tensor notations and Einstein convention with one important exception, i.e., 
the usual tensor analysis rules concerning the position (upper or lower) of indices will 
be disregarded. 

The iterative procedure consists of two schemes which are applied alternatively 
in odd and even numbered iteration cycles. Let n denote the iteration cycle number, 
then these two schemes (designated as Scheme A and Scheme B) are defined as 
follows: 

SCHEME A. For n = 1, 3, 5 ,..., VP’ (= the value of V, at nth iteration) is 
required to satisfy 

and 

avI”’ avy1) 
axI axi . 

(II.1 1) 

(11.12) 

For n = 1, Vj”) is equal to the covariant velocity at the end of the preceding outer 
loop cycle. For n = 3, 5, 7 ,..., Vine’) is obtained from the preceding Scheme B cycle 
(see Eq. (11.17)). The significance of Eqs. (11.11) and (11.12) and their solution 
procedure will be described shortly. For now, it suffices to note that, given Vi”), one 
can define p’“’ and P(“) as 

PO p’“’ d!f. 
RTo 

(n = 1, 3, 5,...) (11.13) 

and 

j?(n) s- & gtip(n)vjn) (n = 1, 3, 5 )... ). (11.14) 
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SCHEME B. For 12 = 2, 4, 6,..., Fi(“) is required to satisfy 

aFi(n) 
----T-=0 8X1 (n 2, 4, 6,...) = (11.15) 

and 

& 
iik aP(fl' _ $k aFkcn - ‘) 

dXJ ax’ 
(n = 2, 4, 6 ,... ). (11.16) 

Here Fk’“- I) is given by Eq. (11.14). In terms of F’“‘, VI”) is defined by 

V,!“’ cf. g,F”“‘/(~p’“-‘~) (n = 2, 4, 6 ,... ). 

As a result of Eq. (II.1 l), Scheme A effectively solves Eq. (11.8) while leaving 
Eq. (11.7) unsolved. Conversely, as a result of Eq. (11.15), Scheme B solves Eq. (11.7) 
while leaving Eq. (11.8) unsolved. If this iterative procedure converges, Eqs. (11.12) 
and (11.16) (they are introduced only to insure the uniqueness of VP) and Fi(“)) 
become identities and the resulting solution must satisfy Eqs. (II.7) to (11.10). 

The solution procedure for Eqs. (II.1 1) and (11.12) is different for n = 1 than for 
n = 3, 5, 7 ,... . For n = 1, the first step is to find a vector tjj such that 

a2*i 

dxj== 
iik a vp 

,i-&n’ (11.18) 

Since Vj’) and Q’ are known, Eq. (11.18) represents three Poisson’s equations for the 
components of i,Gi. If the boundary conditions (BCs) of Ic/; are chosen such that 

“i,=, 
axi 

at all flow boundaries, then V$” defined by 

j,‘(I) !$ v(O) + @k f& 
1 I axJ 

(11.19) 

(11.20) 

represents a solution of Eqs. (II.1 1) and (11.12). To prove this assertion, one notes 
that Eq. (11.18) combined with 

(II.21 ) 

(which is the tensor form of 0. fi = 0) implies that 

a* Wi - -: =o. 
( > ad9 axI a2 (11.22) 
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In other words, (8$J8xi) satisfies the Laplace’s equation. As a result, Eq. (11.19) 
will be valid in the entire solution domain since it is satisfied at all flow boundaries. 
Upon combining Eqs. (II.lS), (11.19), and (11.20), one concludes immediately that 
I’!‘) is a solution of Eqs. (11.11) and (11.12) for n = 1. 

To solve Eqs. (11.11) and (11.12) for n = 3, 5, 7 ,..., one first obtains the solution to 
the Poisson’s equation 

(11.23) 

Using the fact that Vi’) is a solution of Eq. (II.1 1 ), it may be shown that I’{“) 
defined by 

y<ll, d.. J.r( 1) adn) - I f + ax' (n = 3, 5, 7,...) (11.24) 

represents a solution of Eqs. (II.1 1) and (II. 12). Similarly, to solve Eqs. (II. 15) and 
(11.16) for n = 2,4, 6,..., one first obtains the solution of the Poisson’s equation 

&#‘I) r3F”” 1) 
-= -~ 
a2 c?.d S.u’ 

(n = 2, 4, 6,...) (11.25) 

and then constructs Fj”’ using the definition 

F - ,,,r, d’c Fi’” ~~ 1 ) W” +- a.d 
(n = 2, 4, 6 ,... ). (11.26) 

Except for n = 1, all the inner loop iterations involve solving only one Poisson’s 
equation (either Eq. (11.23) or Eq. (11.25)). The boundary conditions required to 
solve these Poisson’s equations must be chosen to be consistent with the flow boun- 
dary conditions. The stability of this iterative procedure is discussed in Appendix B 
where it is shown to be a function of the metric tensor g,. 

CONCLUSIONS 

The current algorithm represents a new procedure for solving 3-D steady Euler 
equations. It is shown that the combined use of Clebsch potentials and the 
Munk-Prim substitution principle substantially reduces the computational effort of 
the outer loop. 

In the inner loop, an iterative scheme is developed in which only Poisson’s 
equations need to be solved. It will be shown in Part II that this scheme can be 
executed efficiently using fast Poisson’s solvers. 
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APPENDIX A: 
BASIC THEOREMS OF THE OUTER LOOP 

In the current study, the outer loop solves for the vorticity field d which satisfies 
the equations 

I&d=vh,-flS (A.1 1 

and 

o.sz’=o. (A.21 

Here, v, ho, T, and S are assumed to be known flow variables with h, and S 
satisfying the equations 

v+ah,=O (A.3) 

and 

P.Os=o. (A-4) 

Given the above conditions, we establish the following theorems: 

THEOREM 1. Assuming that the flow region is regular in the sense that every point 
in this region is either on the inlet surface or is connected to a point on the inlet sur- 
face through a well defined streamline, then a solution 6 of Ejs,. (A.l) and (A.2) is 
uniquely defined if the streamwise vorticity (i.e., fi. CU where e’, A’ p//I VI ) is spec$ed 
at the inlet surface. 

Proof Let d’ and & be two solutions of Eqs. (A.l) and (A.2) with 
6’. e’, = d” * ZU at the inlet surface. If we define Sfi = &’ - d’, then one has 

VxsB=o (A.5) 

O.sd=o (A-6) 

and, at the inlet surface, 

6s. 6” = 0. (A.7) 

Equation (A.5) coupled with the fact that p#O (a streamline is not well defined at 
the point where p=O) implies that 

i?d=CTV (‘4.8) 

where cr is a scalar function. Equations (A.6) to (A.8) imply that 

PPo+(O. V)a=O universally (A.9) 
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and 

o=o at the inlet surface. (A.lO) 

Since the characteristics of PDE (A.9) are the streamlines which, by assumption, 
are well defined in the entire flow region, Eqs. (A.9) and (A.lO) imply that 0 =0 
universally [6]. As a result, Sfi = av= 0 universally. Thus d’ = &. Q.E.D. 

THEOREM 2. Assuming that the flow region is regular and either ph, #O or 
OS # 0 throughout this region, then for any solution b of Eqs. (A.l) and (A.2), there 
exist infinite many pairs of Clebsch potentials z and u such that d can be expressed in 
a form given in Eq. (1.14) and z and u satisfy Eqs. (1.15) and (I.16), respectively. Con- 
uersely, for any T and u which satisfy Eqs. (1.15) and (1.16), Eq. (1.14) defines a 
solution sz’ of Eqs. (A. 1) and (A.2). 

Proof: With the help of Eqs. (A.3), (A.4), (1.15) and (1.16), the second part of 
this theorem can be proved by directly substituting Eq. (1.14) into Eqs. (A.l) and 
(A.2). To prove the first part, first we assume that vhO # 0. For any solution fi of 
Eqs. (A. 1) and (A.2), one introduces a vector field 8’ such that 

CLd-OSxVp (A.ll) 

Here p is any solution of Eq. (1.16). Eqs. (A.l), (A.2), (A.4), (I.16), and (A.ll) 
imply that 

rxfi’=ah, (A.12) 

and 

O.O=o. (A.13) 

As a result of Eq. (A. 12) one has 

d’ . vh,, = 0. (A.14) 

Eq. (A.14) states that h, is a constant along any vortex line defined by df. Using 
Eqs. (A.13) and (A.14), it is shown in Ref. [7] that there is a scalar function r such 
that 

a’ = ah, x VT, (A.15) 

provided ah,#O. Substituting Eq. (A.15) into Eq. (A.12) and using Eq. (A.3), one 
obtains Eq. (I.1 5) as the condition for z. Equation (1.14) follows directly from 
Eqs. (A. 11) and (A.1 5). Since there are infinitely many solutions of Eq. (I. 16) there 
must be infinitely many pairs of Clebsch potentials associated with any b which 
satisfies Eqs. (A.l) and (A.2). 

If vh, =O, but ftS#O, a similar proof can be constructed to show that the first 
part of Theorem 2 is still valid. Q.E.D. 
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According to Theorems 1 and 2, there is freedom in the choice of the Clebsch 
potentials even if the inlet streamwise vorticity (and thus the entire vorticity field) is 
specified. This issue is discussed in Theorem 3. 

THEOREM 3. If t and ,a are a pair of Clebsch potentials associated with an d 
which satisfies Eqs. (A.1 ) and (A.2), then in a region in which Oh, x OS # 0, z’ and p’ 
form another pair of Clebsch potentials associated with the same d if and only if 
there is a function cp(h,, S) such that 

(A.16) 

and 

p’=p+ Mho, S) 
as . (A.17) 

Proof. By directly substituting Eqs. (A.16) and (A.17) into Eqs. (1.14) to (1.16) 
and using Eqs. (A.3) and (A.4), it can be shown that (z’, p’) and (t, p) are indeed 
associated with the same fi if they are related by Eqs. (A.16) and (A.17). To show 
the “only if’ part of this theorem, first we define 

6t = 7’ - z and hp=p’-p (A.18) 

Since, by assumption, both (r’, $) and (5, p) are associated with the same sz’, 
Eqs. (1.14) to (1.16) and (A.18) imply that 

?h,x%+?Sx%+=O (A.19) 

v.osz=o (A.20) 

and 

Jwsp=o. (A.21) 

Using Eq. (A.19), one has 

(A.22) 

and 

(A.23) 

Equations (A.22) and (A.23) used in conjunction with the assumption that 
ffh, xoS#O imply that [S] 

dt=f,(h,, S) and 6~ =fdh,, 9. (A.24) 
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Heref, and f2 are two arbitrary functions of h, and S. Substituting Eq. (A.24) into 
Eq. (A.19) and again invoking the assumption vh, x aS # 0 yields 

af, af2 -=-----, 
as ah, 

As a result of Eq. (A.25), there exists a function cp(h,, S) such that 

adho, s) 6z=f,(h,,S)= ah 
0 

&=f,(ho,W= 
a44ho, 9 

as . 

(A.25) 

(A.27) 

6z and 6,~ as given by Eqs. (A.26) and (A.27) automatically satisfy Eqs. (A.20) and 
(A.21) if Eqs. (A.3) and (A.4) are taken into account. Equations (A.16) and (A.17) 
follow directly from Eqs. (A.1 8) (A.26), and (A.27). Q.E.D. 

Since v/z, x OS = 0 for both hornentropic and hornenergetic flows, Theorem 3 
cannot be applied to these flows. Therefore the following theorems are given: 

THEOREM 4. In a region in which OS = 0 and Oh, # 0, the function u introduced in 
Theorem 2 need not he specified (see Eq. (1.14)). rf z is a Clebsch potential associated 
with an d which satisfies equations (A.l) and (A.2), then z’ is another Clebsch poten- 
tial associated with the same fi tf and only if there is a function y(h,) such that 

5’ = z + y(h,). (A.28) 

THEOREM 5. In a region in which vh, = 0 and OS # 0, the function T introduced in 
Theorem 2 need not be spectfied. Zf p is a Clebsch potential associated with an d 
which satisfies Eqs. (A.l) and (A.2), then u’ is another Clebsch potential associated 
with the same fi if and only tf there is a function 9(S) sucn that 

/d=/d++(S) (A.29) 

Theorems 4 and 5 can be proved using the same techniques employed in the Proof 
of Theorem 3. The details will not be presented. 

APPENDIX B: 
INNER LOOP STABILITY ANALYSIS 

In this appendix, the stability of the inner loop iteration is analyzed assuming 
that the iterative increments of the density p can be neglected. This assumption 
makes a linear analysis possible and it may be valid for flows with low com- 
pressibility. 
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As in Section II, we shall use tensor notations and Einstein convention in this 
study to economize the mathematical expressions even though they may not be ten- 
sor expressions. Using Eqs. (11.12), (11.14), (11.17), and (11.23) to (11.26), it can be 
shown that, for n = 4, 6, 8 ,..., 

p(O(“+l)-(+l) 

axjaxj I=$($+$) (n=4,6,8 ,...) (B.l) 

and 

(n = 4, 6, 8 ,... ). (B.2) 

To study the stability of the inner loop iterations, we shall assume that 

lim q(n)= Cm) 40 and lim a(“) = gfacl) (B-3) n-r +a3 n- +co 

Furthermore, it is assumed that 

q(“) _ (p(oO) = Re(cp(“)e’(Pr”‘)) (n = 2, 4, 6,...) (B-4) 
0’“) _ a(m) = &(8(“)e’(fi”/)) (n = 3, 5, 7,...) (B-5) 

where Pi= the wave vector, $(“) and &“) the constant amplitudes, Re = the real 
part of the quantity in parentheses, and I= 0. 

We shall also assume that the magnitude of Pi is so large and the corresponding 
wavelength so short that the coefficients p, g, g,, and g” are virtually constant in a 
small local region with dimensions comparable to the wavelength (i.e., the 
variations of the (cp”‘) - cp’“)) and (o(“) - aCm’) are substantial in this region). Then, 
for any such local region, a substitution of Eqs. (B.3) to (B.5) into Eqs. (B.l) and 
(B.2) yields 

,(n+l)-+n-I)- go _- pipjp) 
P& 

(n = 4, 6, 8,...) 03.6) 

and 

cp -(n+*)= -p~g~~i~j(~‘“+“-~‘“~l’)+cp’“’ (n = 4, 6, 8 ,... ). (B.7) 

Here Pi are the direction cosines of the vector Pi, i.e., 

(B.8) 
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and thus 

P,l-$= (P,)Z+ (B,)‘+ (i?,)2 = 1. 

Upon substituting Eq. (B.6) into Eq. (B.7) one obtains 

where 

cp -(n+2) = Gqj’“’ (n = 4, 6, S,...) (B.lO) 

G ‘-ii? 1 - ( g”piFj)( g&P,) 

AS a result of Eq. (B.10) stability of the inner loop requires that 

(B.11) 

12 IGI. (B.12) 

To study Eq. (B.12), we note that the matrices formed by g” and g,, are positive 
definite hermitian matrices and are the inverse of each other. These properties are 
invariant under any coordinate transformation and, therefore, they must be valid in 
any computational space since the matrices formed by g” and g,, in the physical 
space are both identity matrices. Assuming that Iz,, A2, and I, (A,> A2 > A3 > 0) are 
the eigenvalues of g,, and Pi is any vector satisfying Eq. (B.9), it can be shown that 
c91 I 

‘“ii’ ;,I2 2 (g”B&( gk,PkBJ 2 1 (B.13) 
I 3 

with the understanding that both bounds are sharp. Using Eq. (B.11) and 
inequality (B.13), it can be shown that the least upper bound of JGI is 

G 
0 

d$. (Al/n, - 1)’ 

4(~,/&) . 
(B.14) 

As a result, the stability condition (B.12) is reduced to 

13G, (B.15) 

or, equivalently, 

3 +@> (&/A,). (B.16) 

In other words, the ratio (1,/L,) is the only factor entering the stability con- 
sideration. 

In conclusion, one notes that several limiting assumptions were made to linearize 
and localize the above stability analysis. It should also be noted that this analysis is 
intended only for the continuous version of the inner loop iterations. In spite of all 
these limitations, it will be shown in Part II that the results of this analysis do 
provide much useful information regarding the stability and the convergence rate of 
a discretized version of the inner loop iterations. 
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